Search results
Results From The WOW.Com Content Network
In many cases, such as order theory, the inverse of the indicator function may be defined. This is commonly called the generalized Möbius function, as a generalization of the inverse of the indicator function in elementary number theory, the Möbius function. (See paragraph below about the use of the inverse in classical recursion theory.)
Diagram illustrating the image method for Laplace's equation for a sphere of radius R. The green point is a charge q lying inside the sphere at a distance p from the origin, the red point is the image of that point, having charge −qR/p, lying outside the sphere at a distance of R 2 /p from the origin. The potential produced by the two charges ...
The image of the function is the set of all output values it may produce, that is, the image of . The preimage of f {\displaystyle f} , that is, the preimage of Y {\displaystyle Y} under f {\displaystyle f} , always equals X {\displaystyle X} (the domain of f {\displaystyle f} ); therefore, the former notion is rarely used.
where x is the initial intensity value in the image, z is the computed derivative and i,j represent the location in the image. The results of this operation will highlight changes in intensity in a diagonal direction. One of the most appealing aspects of this operation is its simplicity; the kernel is small and contains only integers.
The method of images (or method of mirror images) is a mathematical tool for solving differential equations, in which boundary conditions are satisfied by combining a solution not restricted by the boundary conditions with its possibly weighted mirror image. Generally, original singularities are inside the domain of interest but the function is ...
In mathematics, the Dirichlet function [1] [2] is the indicator function of the set of rational numbers, i.e. () = if x is a rational number and () = if x is not a rational number (i.e. is an irrational number).
Deep blue ray refers the radius of curvature and the red line segment is the sagitta of the curve (black).. In optics and especially telescope making, sagitta or sag is a measure of the glass removed to yield an optical curve.
Such indicators have some special properties. For example, the following statements are all true for an indicator function that is trigonometrically convex at least on an interval (,): [1]: 55–57 [2]: 54–61