When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  3. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    A polynomial function is one that has the form = + + + + + where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on.

  4. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The discriminant Δ of the cubic is the square of = () (), where a is the leading coefficient of the cubic, and r 1, r 2 and r 3 are the three roots of the cubic. As Δ {\displaystyle {\sqrt {\Delta }}} changes of sign if two roots are exchanged, Δ {\displaystyle {\sqrt {\Delta }}} is fixed by the Galois group only if the Galois group is A 3 .

  5. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.

  6. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  7. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The derivative of a cubic function is a quadratic function. A cubic function with real coefficients has either one or three real roots (which may not be distinct); [1] all odd-degree polynomials with real coefficients have at least one real root. The graph of a cubic function always has a single inflection point.

  8. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  9. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Solving an interpolation problem leads to a problem in linear algebra amounting to inversion of a matrix. Using a standard monomial basis for our interpolation polynomial () = =, we must invert the Vandermonde matrix to solve () = for the coefficients of ().