When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dimension - Wikipedia

    en.wikipedia.org/wiki/Dimension

    The inductive dimension of a topological space may refer to the small inductive dimension or the large inductive dimension, and is based on the analogy that, in the case of metric spaces, (n + 1)-dimensional balls have n-dimensional boundaries, permitting an inductive definition based on the dimension of the boundaries of open sets. Moreover ...

  3. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    Euclidean spaces of different dimensions are not homeomorphic, which seems evident, but is not easy to prove. The dimension of a topological space is difficult to define; inductive dimension (based on the observation that the dimension of the boundary of a geometric figure is usually one less than the dimension of the figure itself) and ...

  4. Dimension (vector space) - Wikipedia

    en.wikipedia.org/wiki/Dimension_(vector_space)

    A diagram of dimensions 1, 2, 3, and 4. In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field. [1] [2] It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension.

  5. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    The dimension of the manifold at a certain point is the dimension of the Euclidean space that the charts at that point map to (number n in the definition). All points in a connected manifold have the same dimension.

  6. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    A vector space is finite-dimensional if its dimension is a natural number. Otherwise, it is infinite-dimensional, and its dimension is an infinite cardinal. Finite-dimensional vector spaces occur naturally in geometry and related areas. Infinite-dimensional vector spaces occur in many areas of mathematics.

  7. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    For example Euclidean spaces of dimension n, and more generally n-dimensional Riemannian manifolds, naturally have the structure of a metric measure space, equipped with the Lebesgue measure. Certain fractal metric spaces such as the SierpiƄski gasket can be equipped with the α-dimensional Hausdorff measure where α is the Hausdorff dimension .

  8. Two-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_space

    A two-dimensional space is a mathematical space with two dimensions, meaning points have two degrees of freedom: their locations can be locally described with two coordinates or they can move in two independent directions. Common two-dimensional spaces are often called planes, or, more generally, surfaces. These include analogs to physical ...

  9. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Many ideas of dimension can be tested with finite geometry. The simplest instance is PG(3,2), which has Fano planes as its 2-dimensional subspaces. It is an instance of Galois geometry, a study of projective geometry using finite fields. Thus, for any Galois field GF(q), there is a projective space PG(3,q) of three dimensions.