Search results
Results From The WOW.Com Content Network
Thus, the silver nanoparticles were stabilized and it was possible to demonstrate the ability of them to serve as an electron relay for the reduction of dyes by sodium borohydride. [67] Without the silver nanoparticle catalyst, virtually no reaction occurs between sodium borohydride and the various dyes: methylene blue, eosin, and rose bengal.
A majority of silver nanoparticles in consumer products go down the drain and are eventually released into sewer systems and reach wastewater treatment plants. [5] Primary screening and grit removal in wastewater treatment does not completely filter out silver nanoparticles, and coagulation treatment may lead to further condensation into wastewater sludge. [2]
The metal-based nanoparticles used for biomedical prospectives are extremely enticing in various applications due to their distinctive physicochemical characteristics, allowing them to influence cellular processes at the biological level. The fact that metal-based nanoparticles have high surface-to-volume ratios makes them reactive or catalytic.
Nanoparticles can be engineered to catalyze, or hasten, the reaction to transform environmentally pernicious gases into harmless ones. For example, many industrial factories that produce large amounts harmful gases employ a type of nanofiber catalyst made of magnesium oxide (Mg 2 O) to purify dangerous organic substances in the smoke. Although ...
Research in 2018 into the treatment of central nervous system infections caused by free-living amoebae such as Naegleria fowleri and Acanthamoeba castellanii, tested the effectiveness of existing drugs as well as the effectiveness of the same drugs when they were conjugated with silver nanoparticles. In vitro tests demonstrated more potent ...
The gold nanoparticles facilitate the formation of a silver coating on the dye-labelled regions of DNA or RNA, allowing SERS to be performed. This has several potential applications: For example, Cao et al. report that gene sequences for HIV, Ebola, Hepatitis, and Bacillus Anthracis can be uniquely identified using this technique.
These effects were dose-dependent and varied by nanoparticle type. [14] Present research indicates that biomagnification of nanoparticles through trophic levels is highly dependent upon the type of nanoparticles and biota in question. While some instances of bioaccumulation of nanoparticles exist, there is no general consensus. [14] [19]
A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. [1] [2] The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions.