Search results
Results From The WOW.Com Content Network
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.
For all non-empty subsets and of a real vector space, the convex hull of their Minkowski sum is the Minkowski sum of their convex hulls: (+) = + (). This result holds more generally for any finite collection of non-empty sets:
The input to the problem is a multiset S of numbers (usually integers), whose sum is k*T. The associated decision problem is to decide whether S can be partitioned into k subsets such that the sum of each subset is exactly T. There is also an optimization problem: find a partition of S into k subsets, such that the k sums are "as near as ...
In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S). In multiway number partitioning , there is an integer parameter k , and the goal is to decide whether S can be partitioned into k subsets of equal sum ...
In additive combinatorics, the sumset (also called the Minkowski sum) of two subsets and of an abelian group (written additively) is defined to be the set of all sums of an element from with an element from .
Merkle–Hellman is a public key cryptosystem, meaning that two keys are used, a public key for encryption and a private key for decryption. It is based on the subset sum problem (a special case of the knapsack problem). [5]
The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]