When.com Web Search

  1. Ad

    related to: formula for e x stats table for sample mean calculator statology

Search results

  1. Results From The WOW.Com Content Network
  2. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    When "E" is used to denote "expected value", authors use a variety of stylizations: the expectation operator can be stylized as E (upright), E (italic), or (in blackboard bold), while a variety of bracket notations (such as E(X), E[X], and EX) are all used. Another popular notation is μ X.

  3. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.

  4. Mean percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_percentage_error

    Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result, the formula can be used as a measure of the bias in the forecasts. A disadvantage of this measure is that it is undefined whenever a single actual value is zero.

  5. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample mean is the average of the values of a variable in a sample, which is the sum of those values divided by the number of values. Using mathematical notation, if a sample of N observations on variable X is taken from the population, the sample mean is:

  6. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    The sample mean is thus more efficient than the sample median in this example. However, there may be measures by which the median performs better. For example, the median is far more robust to outliers , so that if the Gaussian model is questionable or approximate, there may advantages to using the median (see Robust statistics ).

  7. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...

  8. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    From the definition of ¯ as the average of the jackknife replicates one could try to calculate explicitly. The bias is a trivial calculation, but the variance of x ¯ j a c k {\displaystyle {\bar {x}}_{\mathrm {jack} }} is more involved since the jackknife replicates are not independent.

  9. Cochran's theorem - Wikipedia

    en.wikipedia.org/wiki/Cochran's_theorem

    This shows that the sample mean and sample variance are independent. This can also be shown by Basu's theorem, and in fact this property characterizes the normal distribution – for no other distribution are the sample mean and sample variance independent. [3]