When.com Web Search

  1. Ads

    related to: solve radical equations for me based on math method

Search results

  1. Results From The WOW.Com Content Network
  2. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula

  3. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    The oldest method for computing the number of real roots, and the number of roots in an interval results from Sturm's theorem, but the methods based on Descartes' rule of signs and its extensions—Budan's and Vincent's theorems—are generally more efficient. For root finding, all proceed by reducing the size of the intervals in which roots ...

  4. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  5. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.

  6. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    In other words, Laguerre's method can be used to numerically solve the equation p(x) = 0 for a given polynomial p(x). One of the most useful properties of this method is that it is, from extensive empirical study, very close to being a "sure-fire" method, meaning that it is almost guaranteed to always converge to some root of the polynomial, no ...

  7. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    One of the great triumphs of Galois Theory was the proof that for every n > 4, there exist polynomials of degree n which are not solvable by radicals (this was proven independently, using a similar method, by Niels Henrik Abel a few years before, and is the Abel–Ruffini theorem), and a systematic way for testing whether a specific polynomial ...