Search results
Results From The WOW.Com Content Network
The core functionality of NumPy is its "ndarray", for n-dimensional array, data structure. These arrays are strided views on memory. [9] In contrast to Python's built-in list data structure, these arrays are homogeneously typed: all elements of a single array must be of the same type.
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
Array (data structure) Comparison of programming languages (array) Index origin, another difference between array types across programming languages; Matrix representation; Morton order, another way of mapping multidimensional data to a one-dimensional index, useful in tree data structures; CSR format, a technique for storing sparse matrices in ...
A Dask array comprises many smaller n-dimensional Numpy arrays and uses a blocked algorithm to enable computation on larger-than-memory arrays. During an operation, Dask translates the array operation into a task graph, breaks up large Numpy arrays into multiple smaller chunks, and executes the work on each chunk in parallel.
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
Data for these collections can be imported from various file formats such as comma-separated values, JSON, Parquet, SQL database tables or queries, and Microsoft Excel. [8] A Series is a 1-dimensional data structure built on top of NumPy's array. [9]: 97 Unlike in NumPy, each data point has an associated label. The collection of these labels is ...