When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  3. LibreLogo - Wikipedia

    en.wikipedia.org/wiki/LibreLogo

    LibreLogo is an integrated development environment (IDE) for computer programming in the programming language Python, which works like the language Logo using interactive vector turtle graphics. Its final output is a vector graphics rendition within the LibreOffice suite. It can be used for education and desktop publishing.

  4. Turtle (syntax) - Wikipedia

    en.wikipedia.org/wiki/Turtle_(syntax)

    Turtle is an alternative to RDF/XML, the original syntax and standard for writing RDF. As opposed to RDF/XML, Turtle does not rely on XML and is generally recognized as being more readable and easier to edit manually than its XML counterpart. SPARQL, the query language for RDF, uses a syntax similar to Turtle for expressing query patterns.

  5. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Word2vec is a group of related models that are used to produce word embeddings.These models are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words.

  6. Turtle graphics - Wikipedia

    en.wikipedia.org/wiki/Turtle_graphics

    Turtle graphics are often associated with the Logo programming language. [2] Seymour Papert added support for turtle graphics to Logo in the late 1960s to support his version of the turtle robot, a simple robot controlled from the user's workstation that is designed to carry out the drawing functions assigned to it using a small retractable pen set into or attached to the robot's body.

  7. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Text is converted to numerical representations called tokens, and each token is converted into a vector via lookup from a word embedding table. [1] At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism, allowing the signal for key tokens ...

  8. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.

  9. fastText - Wikipedia

    en.wikipedia.org/wiki/FastText

    fastText is a library for learning of word embeddings and text classification created by Facebook's AI Research (FAIR) lab. [3] [4] [5] [6] The model allows one to ...