When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  3. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    Moreover, if one sets x = 1 + t, one gets without computation that () = (+) is a polynomial in t with the same first coefficient 3 and constant term 1. [2] The rational root theorem implies thus that a rational root of Q must belong to { ± 1 , ± 1 3 } , {\textstyle \{\pm 1,\pm {\frac {1}{3}}\},} and thus that the rational roots of P satisfy x ...

  4. List of integrals of rational functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    Integrands of the form x m (a + b x n + c x 2n) p when b 2 − 4 a c = 0 [ edit ] The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.

  5. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    As another example, to find the area of the region bounded by the graph of the function f(x) = between x = 0 and x = 1, one can divide the interval into five pieces (0, 1/5, 2/5, ..., 1), then construct rectangles using the right end height of each piece (thus √ 0, √ 1/5, √ 2/5, ..., √ 1) and sum their areas to get the approximation

  6. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Then | | = ⁡ (()) +, where sgn(x) is the sign function, which takes the values −1, 0, 1 when x is respectively negative, zero or positive. This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral.

  7. Integral equation - Wikipedia

    en.wikipedia.org/wiki/Integral_equation

    This equation is a special form of the more general weakly singular Volterra integral equation of the first kind, called Abel's integral equation: [7] = Strongly singular: An integral equation is called strongly singular if the integral is defined by a special regularisation, for example, by the Cauchy principal value.

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Although the convergence of x n + 1x n in this case is not very rapid, it can be proved from the iteration formula. This example highlights the possibility that a stopping criterion for Newton's method based only on the smallness of x n + 1x n and f(x n) might falsely identify a root.

  9. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    and is the positive root of the equation x 2x − n = 0. For n = 1, this root is the golden ratio φ, approximately equal to 1.618. The same procedure also works to obtain, if n > 0, = (+ +), which is the positive root of the equation x 2 + x − n = 0.