Search results
Results From The WOW.Com Content Network
Current versions of this UART by Exar claim to be able to handle up to 1.5 Mbit/s. This UART introduces the Auto-RTS and Auto-CTS features in which the RTS# signal is controlled by the UART to signal the external device to stop transmitting when the UART's buffer is full to or beyond a user-set trigger point and to stop transmitting to the ...
IEEE 802.11 RTS/CTS (request to send/clear to send) is the optional mechanism used by the 802.11 wireless networking protocol to reduce frame collisions introduced by the hidden node problem. Originally the protocol fixed the exposed node problem as well, but later RTS/CTS does not, but includes ACKs.
Thus RS-232's use of the RTS and CTS signals, per the older versions of the standard, is asymmetric. This scheme is also employed in present-day RS-232 to RS-485 converters. RS-485 is a multiple-access bus on which only one device can transmit at a time, a concept that is not provided for in RS-232.
RS-232 RTS/CTS, today's [as of?] usual RS-232 hardware flow control IEEE 802.11 RTS/CTS , wireless networking protocol flow control Topics referred to by the same term
A universal synchronous and asynchronous receiver-transmitter (USART, programmable communications interface or PCI) [1] is a type of a serial interface device that can be programmed to communicate asynchronously or synchronously. See universal asynchronous receiver-transmitter (UART) for a discussion of the asynchronous capabilities of these ...
Devices utilizing 802.11 based standards can enjoy the benefits of collision avoidance (RTS / CTS handshake, also Point coordination function), although they do not do so by default. By default they use a Carrier sensing mechanism called exponential backoff (or Distributed coordination function ), that relies upon a station attempting to ...
Source: [1] Node D is unaware of the ongoing data transfer between node A and node B. Node D has data to send to node C, which is in the transmission range of node B. D initiates the process by sending an RTS frame to node C. Node C has already deferred its transmission until the completion of the current data transfer between node A and node B (to avoid co-channel interference at node B).
[1] IEEE 802.11 RTS/CTS mechanism helps to solve this problem only if the nodes are synchronized and packet sizes and data rates are the same for both the transmitting nodes. When a node hears an RTS from a neighboring node, but not the corresponding CTS, that node can deduce that it is an exposed node and is permitted to transmit to other ...