When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    The K-nearest neighbor classification performance can often be significantly improved through metric learning. Popular algorithms are neighbourhood components analysis and large margin nearest neighbor. Supervised metric learning algorithms use the label information to learn a new metric or pseudo-metric.

  3. Structured kNN - Wikipedia

    en.wikipedia.org/wiki/Structured_kNN

    Structured k-nearest neighbours (SkNN) [1] [2] [3] is a machine learning algorithm that generalizes k-nearest neighbors (k-NN). k-NN supports binary classification, multiclass classification, and regression, [4] whereas SkNN allows training of a classifier for general structured output.

  4. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]

  5. Neighbourhood components analysis - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_components...

    Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. . Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbo

  6. Evelyn Fix - Wikipedia

    en.wikipedia.org/wiki/Evelyn_Fix

    Nonparametric Discrimination: Consistency Properties," which defined the nearest neighbor rule, an important method that would go on to become a key piece of machine learning technologies, the k-Nearest Neighbor (k-NN) algorithm. [3] She was a Fellow of the Institute of Mathematical Statistics. [4]

  7. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  8. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    Laplacian eigenmaps builds a graph from neighborhood information of the data set. Each data point serves as a node on the graph and connectivity between nodes is governed by the proximity of neighboring points (using e.g. the k-nearest neighbor algorithm). The graph thus generated can be considered as a discrete approximation of the low ...

  9. Optimization Toolbox - Wikipedia

    en.wikipedia.org/wiki/Optimization_Toolbox

    Optimization can help with fitting a model to data, where the goal is to identify the model parameters that minimize the difference between simulated and experimental data. Common parameter estimation problems that are solved with Optimization Toolbox include estimating material parameters and estimating coefficients of ordinary differential ...

  1. Related searches how to interpret knn model in matlab project with steps and techniques for dummies

    k nn regressionk neighbours algorithm
    k n regression algorithmk neighbour interpolation
    k near neighbors algorithm