When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...

  3. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    The Hamiltonian path problem is a topic discussed in the fields of complexity theory and graph theory. It decides if a directed or undirected graph , G , contains a Hamiltonian path , a path that visits every vertex in the graph exactly once.

  4. Ore's theorem - Wikipedia

    en.wikipedia.org/wiki/Ore's_theorem

    Ore's theorem is a generalization of Dirac's theorem that, when each vertex has degree at least n/2, the graph is Hamiltonian. For, if a graph meets Dirac's condition, then clearly each pair of vertices has degrees adding to at least n. In turn Ore's theorem is generalized by the Bondy–Chvátal theorem.

  5. Fleischner's theorem - Wikipedia

    en.wikipedia.org/wiki/Fleischner's_theorem

    A 2-vertex-connected graph, its square, and a Hamiltonian cycle in the square. In graph theory, a branch of mathematics, Fleischner's theorem gives a sufficient condition for a graph to contain a Hamiltonian cycle. It states that, if is a 2-vertex-connected graph, then the square of is Hamiltonian.

  6. Path (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Path_(graph_theory)

    A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).

  7. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.

  8. Lovász conjecture - Wikipedia

    en.wikipedia.org/wiki/Lovász_conjecture

    Another version of Lovász conjecture states that . Every finite connected vertex-transitive graph contains a Hamiltonian cycle except the five known counterexamples.. There are 5 known examples of vertex-transitive graphs with no Hamiltonian cycles (but with Hamiltonian paths): the complete graph, the Petersen graph, the Coxeter graph and two graphs derived from the Petersen and Coxeter ...

  9. Pósa's theorem - Wikipedia

    en.wikipedia.org/wiki/Pósa's_theorem

    Pósa's theorem, in graph theory, is a sufficient condition for the existence of a Hamiltonian cycle based on the degrees of the vertices in an undirected graph. It implies two other degree-based sufficient conditions, Dirac's theorem on Hamiltonian cycles and Ore's theorem. Unlike those conditions, it can be applied to graphs with a small ...