Search results
Results From The WOW.Com Content Network
When determining the stability constants for ternary complexes, M p A q B r it is common practice the fix the values for the corresponding binary complexes M p′ A q′ and M p′′ B q′′, at values which have been determined in separate experiments. Use of such constraints reduces the number of parameters to be determined, but may result ...
Reaction progress kinetic analysis can distinguish a) uninhibited catalysis b) irreversible catalyst death, and c) product inhibition by a series of same-excess experiments. Lack of overlay between rate vs. substrate concentration for multiple trials of the same reaction with the same-excess but different initial concentrations is indicative of ...
In 1923, Peter Debye and Erich Hückel reported the first successful theory for the distribution of charges in ionic solutions. [7] The framework of linearized Debye–Hückel theory subsequently was applied to colloidal dispersions by S. Levine and G. P. Dube [8] [9] who found that charged colloidal particles should experience a strong medium-range repulsion and a weaker long-range attraction.
In coordination chemistry, a stability constant (also called formation constant or binding constant) is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex .
In such a case A is the kinetic product and is favoured under kinetic control and B is the thermodynamic product and is favoured under thermodynamic control. [ 1 ] [ 2 ] [ 3 ] The conditions of the reaction, such as temperature, pressure, or solvent, affect which reaction pathway may be favored: either the kinetically controlled or the ...
A chevron plot is a way of representing protein folding kinetic data in the presence of varying concentrations of denaturant that disrupts the protein's native tertiary structure. The plot is known as "chevron" plot because of the canonical v , or chevron shape observed when the logarithm of the observed relaxation rate is plotted as a function ...
The kinetic isotope effect is the difference in the rate of a chemical reaction when an atom in one of the reactants is replaced by one of its isotopes. Chemical kinetics provides information on residence time and heat transfer in a chemical reactor in chemical engineering and the molar mass distribution in polymer chemistry.
The ideal kinetic resolution is that in which only one enantiomer reacts, i.e. k R >>k S. The selectivity (s) of a kinetic resolution is related to the rate constants of the reaction of the R and S enantiomers, k R and k S respectively, by s=k R /k S, for k R >k S. This selectivity can also be referred to as the relative rates of reaction.