When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    The symmetric group on a finite set is the group whose elements are all bijective functions from to and whose group operation is that of function composition. [1] For finite sets, "permutations" and "bijective functions" refer to the same operation, namely rearrangement. The symmetric group of degree is the symmetric group on the set .

  3. Covering groups of the alternating and symmetric groups

    en.wikipedia.org/wiki/Covering_groups_of_the...

    The symmetric group of degree n ≥ 4 has Schur covers of order 2⋅n! There are two isomorphism classes if n ≠ 6 and one isomorphism class if n = 6. The alternating group of degree n has one isomorphism class of Schur cover, which has order n! except when n is 6 or 7, in which case the Schur cover has order 3⋅n!.

  4. Representation theory of the symmetric group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    For n = 3, 4 there are two additional one-dimensional irreducible representations, corresponding to maps to the cyclic group of order 3: A 3 ≅ C 3 and A 4 → A 4 /V ≅ C 3. For n ≥ 7, there is just one irreducible representation of degree n − 1, and this is the smallest degree of a non-trivial irreducible representation.

  5. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    The symmetry group of a snowflake is D 6, a dihedral symmetry, the same as for a regular hexagon. In mathematics, a dihedral group is the group of symmetries of a regular polygon, [1][2] which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory and ...

  6. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    This finishes the proof that the Galois group of a general equation is the symmetric group, and thus proves the original Abel–Ruffini theorem, which asserts that the general polynomial equation of degree n cannot be solved in radicals for n > 4.

  7. Alternating group - Wikipedia

    en.wikipedia.org/wiki/Alternating_group

    A 4 is isomorphic to PSL 2 (3) [1] and the symmetry group of chiral tetrahedral symmetry. A 5 is isomorphic to PSL 2 (4), PSL 2 (5), and the symmetry group of chiral icosahedral symmetry. (See [1] for an indirect isomorphism of PSL 2 (F 5) → A 5 using a classification of simple groups of order 60, and here for a direct proof). A 6 is ...

  8. Automorphisms of the symmetric and alternating groups

    en.wikipedia.org/wiki/Automorphisms_of_the...

    the product of two 2-cycles such as (1 2)(3 4) maps to another product of two 2-cycles such as (3 5)(4 6), accounting for 45 permutations; the product of a 2-cycle and a 4-cycle such as (1 2 3 4)(5 6) maps to another such permutation such as (1 4 2 6)(3 5), accounting for the 90 remaining permutations. And the odd part is also conserved:

  9. Cayley's theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley's_theorem

    In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of a symmetric group. [1] More specifically, G is isomorphic to a subgroup of the symmetric group whose elements are the permutations of the underlying set of G. Explicitly, The homomorphism can also be understood as ...