Search results
Results From The WOW.Com Content Network
EF-Tu (elongation factor thermo unstable) is a prokaryotic elongation factor responsible for catalyzing the binding of an aminoacyl-tRNA (aa-tRNA) to the ribosome. It is a G-protein , and facilitates the selection and binding of an aa-tRNA to the A-site of the ribosome.
EF-G (elongation factor G, historically known as translocase) is a prokaryotic elongation factor involved in mRNA translation. As a GTPase , EF-G catalyzes the movement (translocation) of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome .
Elongation is the most rapid step in translation. [3] In bacteria , it proceeds at a rate of 15 to 20 amino acids added per second (about 45-60 nucleotides per second). [ citation needed ] In eukaryotes the rate is about two amino acids per second (about 6 nucleotides read per second).
13629 Ensembl ENSG00000167658 ENSMUSG00000034994 UniProt P13639 P58252 RefSeq (mRNA) NM_001961 NM_007907 RefSeq (protein) NP_001952 NP_031933 Location (UCSC) Chr 19: 3.98 – 3.99 Mb Chr 10: 81.01 – 81.02 Mb PubMed search Wikidata View/Edit Human View/Edit Mouse Eukaryotic elongation factor 2 is a protein that in humans is encoded by the EEF2 gene. It is the archaeal and eukaryotic ...
The elongation phase starts once assembly of the elongation complex has been completed, and progresses until a termination sequence is encountered. [1] The post-initiation movement of RNA polymerase is the target of another class of important regulatory mechanisms.
Elongation factor 1-alpha 1 (eEF1a1) is a translation elongation protein, expressed across eukaryotes. In humans, it is encoded by the EEF1A1 gene. [5] [6] This gene encodes an isoform of the alpha subunit of the elongation factor-1 complex, which is responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome. This isoform (alpha ...
Simple diagram of transcription elongation. One strand of the DNA, the template strand (or noncoding strand), is used as a template for RNA synthesis. As transcription proceeds, RNA polymerase traverses the template strand and uses base pairing complementarity with the DNA template to create an RNA copy (which elongates during the traversal).
The σ-factor is needed to initiate transcription but is not needed to continue transcribing the DNA. The σ-factor dissociates from the core enzyme and elongation proceeds. This signals the end of the initiation phase and the holoenzyme is now in core polymerase form. [4] Abortive cycling occurs prior to sigma factor release