Search results
Results From The WOW.Com Content Network
This sorting mechanism combines the influence of the down-slope gravitational force of the profile and forces due to flow asymmetry; the position where there is zero net transport is known as the null point and was first proposed by Cornaglia in 1889. [3]
Also, plants with deep reaching roots can transpire water more constantly, because those roots can pull more water into the plant and leaves. Another example is that conifer forests tend to have higher rates of evapotranspiration than deciduous broadleaf forests, particularly in the dormant winter and early spring seasons, because they are ...
Cavitation is when the plant cannot supply its xylem with adequate water so instead of being filled with water the xylem begins to be filled with water vapor. These particles of water vapor come together and form blockages within the xylem of the plant. This prevents the plant from being able to transport water throughout its vascular system. [16]
Phytogeography (from Greek φυτόν, phytón = "plant" and γεωγραφία, geographía = "geography" meaning also distribution) or botanical geography is the branch of biogeography that is concerned with the geographic distribution of plant species and their influence on the earth's surface. [1]
Epilobium hirsutum seed head dispersing seeds. In spermatophyte plants, seed dispersal is the movement, spread or transport of seeds away from the parent plant. [1] Plants have limited mobility and rely upon a variety of dispersal vectors to transport their seeds, including both abiotic vectors, such as the wind, and living vectors such as birds.
In plants, the transpiration stream is the uninterrupted stream of water and solutes which is taken up by the roots and transported via the xylem to the leaves where it evaporates into the air/apoplast-interface of the substomatal cavity. It is driven by capillary action and in some plants by root pressure.
Hydraulic redistribution is a passive mechanism where water is transported from moist to dry soils via subterranean networks. [1] It occurs in vascular plants that commonly have roots in both wet and dry soils, especially plants with both taproots that grow vertically down to the water table, and lateral roots that sit close to the surface.
However, without dedicated transport vessels, the cohesion-tension mechanism cannot transport water more than about 2 cm, severely limiting the size of the earliest plants. [33] This process demands a steady supply of water from one end, to maintain the chains; to avoid exhausting it, plants developed a waterproof cuticle .