Search results
Results From The WOW.Com Content Network
Enzymes are listed here by their classification in the International Union of Biochemistry and Molecular Biology's Enzyme Commission (EC) numbering system: Category:Oxidoreductases (EC 1) ( Oxidoreductase )
The Enzyme Commission number (EC number) is a numerical classification scheme for enzymes, based on the chemical reactions they catalyze. [1] As a system of enzyme nomenclature, every EC number is associated with a recommended name for the corresponding enzyme-catalyzed reaction. EC numbers do not specify enzymes but enzyme-catalyzed reactions.
This list contains a list of sub-classes for the seventh group of Enzyme Commission numbers, EC 7, translocases, placed in numerical order as determined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology.
Enzymes can be classified by two main criteria: either amino acid sequence similarity (and thus evolutionary relationship) or enzymatic activity. Enzyme activity. An enzyme's name is often derived from its substrate or the chemical reaction it catalyzes, with the word ending in -ase.
Enzymes appear in the subcategory Category:Enzymes by function according to the EC number classification: . EC 1 Oxidoreductases: catalyze oxidation/reduction reactions; EC 2 Transferases: transfer a functional group (e.g. a methyl or phosphate group)
Thus, the two substrates of this enzyme are N-acyl-L-amino acid and H 2 O, whereas its two products are carboxylate and L-amino acid. This enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amides. The systematic name of this enzyme class is N-acyl-L-amino acid ...
Ribbon diagram of a protease (TEV protease) complexed with its peptide substrate in black with catalytic residues in red.(. A protease (also called a peptidase, proteinase, or proteolytic enzyme) [1] is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. [2]
These enzymes can be identified by a conserved HEXXH motif in their active site. This motif is crucial for the enzyme's function, as the histidine amino acids within the motif coordinate (bind) the metal ion, which then uses hydrolysis to break the peptide bond between the first amino acid and the rest of the protein. [9]