Search results
Results From The WOW.Com Content Network
The hypothalamus responds to these motivations by regulating activity in the endocrine system to release hormones to alter the behaviour of the animal. [5] These hormones include epinephrine (adrenaline) to increase blood flow and heart rate for a sufficient fight-or-flight response, [ 6 ] and ghrelin , which is commonly described as "the ...
As its name suggests, it depends upon the hypothalamus, the pituitary gland, and the thyroid gland. The hypothalamus senses low circulating levels of thyroid hormone (Triiodothyronine (T3) and Thyroxine (T4)) and responds by releasing thyrotropin-releasing hormone (TRH). The TRH stimulates the anterior pituitary to produce thyroid-stimulating ...
The hypothalamus is located below the thalamus and is part of the limbic system. [1] It forms the basal part of the diencephalon. All vertebrate brains contain a hypothalamus. [2] In humans, it is about the size of an almond. [3] The hypothalamus has the function of regulating certain metabolic processes and other activities of the autonomic ...
Neuroendocrinology is the branch of biology (specifically of physiology) which studies the interaction between the nervous system and the endocrine system; i.e. how the brain regulates the hormonal activity in the body. [1]
The higher cognitive functions which distinguish humans from other animals are primarily in the cortex. The reptilian brain controls muscles, balance, and autonomic functions, such as breathing and heartbeat. This part of the brain is active, even in deep sleep. The limbic system includes the hypothalamus, hippocampus, and amygdala. The ...
Endocrinopathies are classified as primary, secondary, or tertiary. Primary endocrine disease inhibits the action of downstream glands. Secondary endocrine disease is indicative of a problem with the pituitary gland. Tertiary endocrine disease is associated with dysfunction of the hypothalamus and its releasing hormones. [citation needed]
Schematic of the HPA axis (CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone) Hypothalamus, pituitary gland, and adrenal cortex The hypothalamic–pituitary–adrenal axis (HPA axis or HTPA axis) is a complex set of direct influences and feedback interactions among three components: the hypothalamus (a part of the brain located below the thalamus), the pituitary gland (a ...
The posterior pituitary consists mainly of neuronal projections of magnocellular neurosecretory cells extending from the supraoptic and paraventricular nuclei of the hypothalamus. These axons store and release neurohypophysial hormones oxytocin and vasopressin into the neurohypophyseal capillaries, from there they get into the systemic ...