Search results
Results From The WOW.Com Content Network
In electronics and electrical engineering, the form factor of an alternating current waveform (signal) is the ratio of the RMS (root mean square) value to the average value (mathematical mean of absolute values of all points on the waveform). [1] It identifies the ratio of the direct current of equal power relative to the given alternating ...
The RMS value of an alternating current is also known as its heating value, as it is a voltage which is equivalent to the direct current value that would be required to get the same heating effect. For example, if 120 V AC RMS is applied to a resistive heating element it would heat up by exactly the same amount as if 120 V DC were applied.
So, the RMS value, I RMS, of the function I(t) is the constant current that yields the same power dissipation as the time-averaged power dissipation of the current I(t). Average power can also be found using the same method that in the case of a time-varying voltage, V(t), with RMS value V RMS,
The neutral current can be determined by adding the three phase currents together as complex numbers and then converting from rectangular to polar co-ordinates. If the three-phase root mean square (RMS) currents are I L 1 {\displaystyle I_{L1}} , I L 2 {\displaystyle I_{L2}} , and I L 3 {\displaystyle I_{L3}} , the neutral RMS current is:
where V k is the RMS voltage of the kth harmonic, I k is the RMS current of the kth harmonic, and k = 1 is the order of the fundamental component. It is usually the case that we neglect higher voltage harmonics; however, if we do not neglect them, real power transferred to the load is affected by harmonics.
Crest factor is a parameter of a waveform, such as alternating current or sound, showing the ratio of peak values to the effective value. In other words, crest factor indicates how extreme the peaks are in a waveform. Crest factor 1 indicates no peaks, such as direct current or a square wave. Higher crest factors indicate peaks, for example ...
The average rectified value is mainly used to characterize alternating voltage and current. It can be computed by averaging the absolute value of a waveform over one full period of the waveform. [1] While conceptually similar to the root mean square (RMS), ARV will differ from it whenever a function's absolute value varies locally
Ruze's equation is an equation relating the gain of an antenna to the root mean square (RMS) of the antenna's random surface errors. The equation was originally developed for parabolic reflector antennas, and later extended to phased arrays.