When.com Web Search

  1. Ads

    related to: probability at least one calculator with solution given area

Search results

  1. Results From The WOW.Com Content Network
  2. Buffon's needle problem - Wikipedia

    en.wikipedia.org/wiki/Buffon's_needle_problem

    We can calculate the probability P as the product of two probabilities: P = P 1 · P 2, where P 1 is the probability that the center of the needle falls close enough to a line for the needle to possibly cross it, and P 2 is the probability that the needle actually crosses the line, given that the center is within reach.

  3. Monte Carlo algorithm - Wikipedia

    en.wikipedia.org/wiki/Monte_carlo_algorithm

    It always answers true for prime number inputs; for composite inputs, it answers false with probability at least 1 ⁄ 2 and true with probability less than 1 ⁄ 2. Thus, false answers from the algorithm are certain to be correct, whereas the true answers remain uncertain; this is said to be a 1 ⁄ 2 -correct false-biased algorithm .

  4. Balls into bins problem - Wikipedia

    en.wikipedia.org/wiki/Balls_into_bins_problem

    In the simplest case, if one allocates balls into bins (with =) sequentially one by one, and for each ball one chooses random bins at each step and then allocates the ball into the least loaded of the selected bins (ties broken arbitrarily), then with high probability the maximum load is: [8]

  5. Secretary problem - Wikipedia

    en.wikipedia.org/wiki/Secretary_problem

    One important drawback for applications of the solution of the classical secretary problem is that the number of applicants must be known in advance, which is rarely the case. One way to overcome this problem is to suppose that the number of applicants is a random variable N {\displaystyle N} with a known distribution of P ( N = k ) k = 1 , 2 ...

  6. Coupon collector's problem - Wikipedia

    en.wikipedia.org/wiki/Coupon_collector's_problem

    In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...

  7. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...

  8. Isolation lemma - Wikipedia

    en.wikipedia.org/wiki/Isolation_lemma

    Then, with probability at least /, there is a unique set in that has the minimum weight among all sets of . It is remarkable that the lemma assumes nothing about the nature of the family F {\displaystyle {\mathcal {F}}} : for instance F {\displaystyle {\mathcal {F}}} may include all 2 n − 1 {\displaystyle 2^{n}-1} nonempty subsets.

  9. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).