Search results
Results From The WOW.Com Content Network
The conditional probability at any interior node is the average of the conditional probabilities of its children. The latter property is important because it implies that any interior node whose conditional probability is less than 1 has at least one child whose conditional probability is less than 1.
However, if one considers 100 confidence intervals simultaneously, each with 95% coverage probability, the expected number of non-covering intervals is 5. If the intervals are statistically independent from each other, the probability that at least one interval does not contain the population parameter is 99.4%.
This process can be generalized to a group of n people, where p(n) is the probability of at least two of the n people sharing a birthday. It is easier to first calculate the probability p (n) that all n birthdays are different. According to the pigeonhole principle, p (n) is zero when n > 365. When n ≤ 365:
In others words, the sample complexity (,,) defines the rate of consistency of the algorithm: given a desired accuracy and confidence , one needs to sample (,,) data points to guarantee that the risk of the output function is within of the best possible, with probability at least .
One important drawback for applications of the solution of the classical secretary problem is that the number of applicants must be known in advance, which is rarely the case. One way to overcome this problem is to suppose that the number of applicants is a random variable N {\displaystyle N} with a known distribution of P ( N = k ) k = 1 , 2 ...
In the simplest case, if one allocates balls into bins (with =) sequentially one by one, and for each ball one chooses random bins at each step and then allocates the ball into the least loaded of the selected bins (ties broken arbitrarily), then with high probability the maximum load is: [8]
This is the smallest value for which we care about observing a difference. Now, for (1) to reject H 0 with a probability of at least 1 − β when H a is true (i.e. a power of 1 − β), and (2) reject H 0 with probability α when H 0 is true, the following is necessary: If z α is the upper α percentage point of the standard normal ...
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...