Search results
Results From The WOW.Com Content Network
Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...
The Heaviside cover-up method, named after Oliver Heaviside, is a technique for quickly determining the coefficients when performing the partial-fraction expansion of a rational function in the case of linear factors. [1] [2] [3] [4]
The formula for an integration by parts is () ′ = [() ()] ′ (). Beside the boundary conditions , we notice that the first integral contains two multiplied functions, one which is integrated in the final integral ( g ′ {\displaystyle g'} becomes g {\displaystyle g} ) and one which is differentiated ( f {\displaystyle f} becomes f ...
Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
Define p 2 as the point at time t whose x-coordinate matches that of p̄ 1, and define p̄ 2 to be the corresponding point of p 2 as shown in the figure on the right. The distance Δx between p 1 and p̄ 1 is the same as the distance between p 2 and p̄ 2 (green lines), and dividing this distance by Δt yields the speed of the wave.
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.
Vladimir A. Smirnov: Feynman Integral Calculus, Springer, ISBN 978-3-54030610-8 (Aug.,2006). Vladimir A. Smirnov: Analytic Tools for Feynman Integrals , Springer, ISBN 978-3-64234885-3 (Jan.,2013). Johannes Blümlein and Carsten Schneider (Eds.): Anti-Differentiation and the Calculation of Feynman Amplitudes , Springer, ISBN 978-3-030-80218-9 ...