When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.

  3. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .

  4. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    In early 1671 Gregory discovered something like the general Maclaurin series and sent a letter to Collins including series for ⁡, ⁡, ⁡, ⁡ (the integral of ), ⁡ (+) (the integral of sec, the inverse Gudermannian function), ⁡ (), and ⁡ (the Gudermannian function). However, thinking that he had merely redeveloped a method by Newton ...

  5. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    For any real x, Newton's method can be used to compute erfi −1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges: ⁡ = = + +, where c k is defined as above. Asymptotic expansion

  6. Asymptotic expansion - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_expansion

    The theory of asymptotic series was created by Poincaré (and independently by Stieltjes) in 1886. [1] The most common type of asymptotic expansion is a power series in either positive or negative powers. Methods of generating such expansions include the Euler–Maclaurin summation formula and integral transforms such as the Laplace and Mellin ...

  7. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    where the power series on the right-hand side of is expressed in terms of the (generalized) binomial coefficients ():= () (+)!.Note that if α is a nonnegative integer n then the x n + 1 term and all later terms in the series are 0, since each contains a factor of (n − n).

  8. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    The derivative of arctan x is 1 / (1 + x 2); conversely, the integral of 1 / ... One can find the Maclaurin series for by naïvely integrating ...

  9. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.