Search results
Results From The WOW.Com Content Network
Although the main definition of the gamma function—the Euler integral of the second kind—is only valid (on the real axis) for positive arguments, its domain can be extended with analytic continuation [13] to negative arguments by shifting the negative argument to positive values by using either the Euler's reflection formula ...
In mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x). It is a special case of a functional equation . It is common in mathematical literature to use the term "functional equation" for what are specifically reflection formulae.
The classical gamma function satisfies the functional equation (+) = for any .This has an analogue with respect to the Morita gamma function: (+) = {,,.The Euler's reflection formula () = has its following simple counterpart in the p-adic case:
The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.
Euler product formula for the Riemann zeta function. Euler–Maclaurin formula (Euler's summation formula) relating integrals to sums; Euler–Rodrigues formula describing the rotation of a vector in three dimensions; Euler's reflection formula, reflection formula for the gamma function; Local Euler characteristic formula
The roots of the digamma function are the saddle points of the complex-valued gamma function. Thus they lie all on the real axis. The only one on the positive real axis is the unique minimum of the real-valued gamma function on R + at x 0 = 1.461 632 144 968 362 341 26.... All others occur single between the poles on the negative axis:
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral
The Euler characteristic can be defined for connected plane graphs by the same + formula as for polyhedral surfaces, where F is the number of faces in the graph, including the exterior face. The Euler characteristic of any plane connected graph G is 2.