Search results
Results From The WOW.Com Content Network
Symmetry-breaking phase transitions play an important role in cosmology. As the universe expanded and cooled, the vacuum underwent a series of symmetry-breaking phase transitions. For example, the electroweak transition broke the SU(2)×U(1) symmetry of the electroweak field into the U(1) symmetry of the present-day electromagnetic field.
Spontaneous symmetry breaking is also associated with phase transitions. For example in the Ising model , as the temperature of the system falls below the critical temperature the Z 2 {\displaystyle \mathbb {Z} _{2}} symmetry of the vacuum is broken, giving a phase transition of the system.
It also depicts the crucial role of the Higgs boson in electroweak symmetry breaking, and shows how the properties of the various particles differ in the (high-energy) symmetric phase (top) and the (low-energy) broken-symmetry phase (bottom).
Derivative works of this file: Pure iron phase diagram (EN).png This is a retouched picture , which means that it has been digitally altered from its original version. The original can be viewed here: Diagramma di fase del ferro puro.svg : .
Charge ordering (CO) is a (first- or second-order) phase transition occurring mostly in strongly correlated materials such as transition metal oxides or organic conductors. Due to the strong interaction between electrons, charges are localized on different sites leading to a disproportionation and an ordered superlattice .
Low-pressure phase diagram of pure iron. BCC is body centered cubic and FCC is face-centered cubic. Iron-carbon eutectic phase diagram, showing various forms of Fe x C y substances. Iron allotropes, showing the differences in structure. The alpha iron (α-Fe) is a body-centered cubic (BCC) and the gamma iron (γ-Fe) is a face-centered cubic (FCC).
Usually such an electric polarization arises via an inversion-symmetry-breaking structural distortion from a parent centrosymmetric phase. For example, in the prototypical ferroelectric barium titanate, BaTiO 3 , the parent phase is the ideal cubic ABO 3 perovskite structure , with the B-site Ti 4+ ion at the center of its oxygen coordination ...
Baryogenesis within the Standard Model requires the electroweak symmetry breaking to be a first-order cosmological phase transition, since otherwise sphalerons wipe off any baryon asymmetry that happened up to the phase transition. Beyond this, the remaining amount of baryon non-conserving interactions is negligible.