Search results
Results From The WOW.Com Content Network
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
This implements the tensor product, yielding a composite tensor. Contracting two indices in this composite tensor implements the desired contraction of the two tensors. For example, matrices can be represented as tensors of type (1,1) with the first index being contravariant and the second index being covariant.
The tensor product of V and its dual space is isomorphic to the space of linear maps from V to V: a dyadic tensor vf is simply the linear map sending any w in V to f(w)v. When V is Euclidean n-space, we can use the inner product to identify the dual space with V itself, making a dyadic tensor an elementary tensor product of two vectors in ...
The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...
The inner product of two vectors over the field of complex numbers is, in general, a complex number, and is sesquilinear instead of bilinear. An inner product space is a normed vector space, and the inner product of a vector with itself is real and positive-definite.
If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.
The exterior product of two alternating tensors t and s of ranks r and p is given by ... With respect to the inner product, exterior multiplication and the interior ...
Let and be two Hilbert spaces with inner products , and , , respectively. Construct the tensor product of H 1 {\displaystyle H_{1}} and H 2 {\displaystyle H_{2}} as vector spaces as explained in the article on tensor products .