Search results
Results From The WOW.Com Content Network
Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]]. [2] [better source needed] Respiration can be either aerobic, requiring oxygen, or anaerobic; some organisms can switch between aerobic and anaerobic respiration. [3] [better source needed]
[1] [2] In this type of respiration, oxygen serves as the terminal electron acceptor for the electron transport chain. [1] Aerobic respiration has the advantage of yielding more energy (adenosine triphosphate or ATP) than fermentation or anaerobic respiration, [3] but obligate aerobes are subject to high levels of oxidative stress. [2]
An aerobic organism or aerobe is an organism that can survive and grow in an oxygenated environment. [1] The ability to exhibit aerobic respiration may yield benefits to the aerobic organism, as aerobic respiration yields more energy than anaerobic respiration. [2] Energy production of the cell involves the synthesis of ATP by an enzyme called ...
The chemolithotrophs that are best documented are aerobic respirers, meaning that they use oxygen in their metabolic process. The list of these microorganisms that employ anaerobic respiration though is growing. At the heart of this metabolic process is an electron transport system that is similar to that of chemoorganotrophs.
Desulfovibrio vulgaris is the best-studied sulfate-reducing microorganism species; the bar in the upper right is 0.5 micrometre long.. Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate (SO 2−
Anaerobic respiration is done by aerobic organisms when there is not sufficient oxygen in a cell to undergo aerobic respiration as well as by cells called anaerobes that selectively perform anaerobic respiration even in the presence of oxygen. In anaerobic respiration, weak oxidants like sulfate and nitrate serve as oxidants in the place of ...
In some cases, aerobic methane oxidation can take place in anoxic environments. "Candidatus Methylomirabilis oxyfera" belongs to the phylum NC10 bacteria, and can catalyze nitrite reduction through an "intra-aerobic" pathway, in which internally produced oxygen is used to oxidise methane.
The terms aerobic respiration, anaerobic respiration and fermentation (substrate-level phosphorylation) do not refer to primary nutritional groups, but simply reflect the different use of possible electron acceptors in particular organisms, such as O 2 in aerobic respiration, or nitrate (NO − 3), sulfate (SO 2−