When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci search technique - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_search_technique

    Let k be defined as an element in F, the array of Fibonacci numbers. n = F m is the array size. If n is not a Fibonacci number, let F m be the smallest number in F that is greater than n. The array of Fibonacci numbers is defined where F k+2 = F k+1 + F k, when k ≥ 0, F 1 = 1, and F 0 = 1. To test whether an item is in the list of ordered ...

  3. Fibonacci retracement - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_retracement

    In finance, Fibonacci retracement is a method of technical analysis for determining support and resistance levels. [1] It is named after the Fibonacci sequence of numbers, [ 1 ] whose ratios provide price levels to which markets tend to retrace a portion of a move, before a trend continues in the original direction.

  4. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...

  5. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    Every nontrivial Fibonacci integer sequence appears (possibly after a shift by a finite number of positions) as one of the rows of the Wythoff array. The Fibonacci sequence itself is the first row, and a shift of the Lucas sequence is the second row. [4] See also Fibonacci integer sequences modulo n.

  6. Wythoff array - Wikipedia

    en.wikipedia.org/wiki/Wythoff_array

    In mathematics, the Wythoff array is an infinite matrix of integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff.Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array.

  7. Strict Fibonacci heap - Wikipedia

    en.wikipedia.org/wiki/Strict_Fibonacci_heap

    A strict Fibonacci heap is a single tree satisfying the minimum-heap property. That is, the key of a node is always smaller than or equal to its children. As a direct consequence, the node with the minimum key always lies at the root. Like ordinary Fibonacci heaps, [4] strict Fibonacci heaps possess substructures similar to binomial heaps. To ...

  8. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}

  9. Array (data structure) - Wikipedia

    en.wikipedia.org/wiki/Array_(data_structure)

    For a vector with linear addressing, the element with index i is located at the address B + c · i, where B is a fixed base address and c a fixed constant, sometimes called the address increment or stride. If the valid element indices begin at 0, the constant B is simply the address of the first element of the array.