Ad
related to: at least one probability calculator given
Search results
Results From The WOW.Com Content Network
At least one of them is a boy. What is the probability that both children are boys? Gardner initially gave the answers 1 / 2 and 1 / 3 , respectively, but later acknowledged that the second question was ambiguous. [1] Its answer could be 1 / 2 , depending on the procedure by which the information "at least one of them is a ...
This process can be generalized to a group of n people, where p(n) is the probability of at least two of the n people sharing a birthday. It is easier to first calculate the probability p (n) that all n birthdays are different. According to the pigeonhole principle, p (n) is zero when n > 365. When n ≤ 365:
In the simplest case, if one allocates balls into bins (with =) sequentially one by one, and for each ball one chooses random bins at each step and then allocates the ball into the least loaded of the selected bins (ties broken arbitrarily), then with high probability the maximum load is: [8]
A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...
It is a hard (and often open) problem to calculate the minimum number of tickets one needs to purchase to guarantee that at least one of these tickets matches at least 2 numbers. In the 5-from-90 lotto, the minimum number of tickets that can guarantee a ticket with at least 2 matches is 100. [3]
However, the probability of winning by always switching is a logically distinct concept from the probability of winning by switching given that the player has picked door 1 and the host has opened door 3. As one source says, "the distinction between [these questions] seems to confound many". [38]
We can calculate the probability P as the product of two probabilities: P = P 1 · P 2, where P 1 is the probability that the center of the needle falls close enough to a line for the needle to possibly cross it, and P 2 is the probability that the needle actually crosses the line, given that the center is within reach.