Search results
Results From The WOW.Com Content Network
At the most basic level name resolution usually attempts to find the binding in the smallest enclosing scope, so that for example local variables supersede global variables; this is called shadowing. visibility rules, which determine whether identifiers from specific namespaces or scopes are visible from the current context;
Dynamic binding (or late binding or virtual binding) is name binding performed as the program is running. [2] An example of a static binding is a direct C function call: the function referenced by the identifier cannot change at runtime. An example of dynamic binding is dynamic dispatch, as in a C++ virtual method call.
Most C code can easily be made to compile correctly in C++ but there are a few differences that cause some valid C code to be invalid or behave differently in C++. For example, C allows implicit conversion from void * to other pointer types but C++ does not (for type safety reasons).
32-bit compilers emit, respectively: _f _g@4 @h@4 In the stdcall and fastcall mangling schemes, the function is encoded as _name@X and @name@X respectively, where X is the number of bytes, in decimal, of the argument(s) in the parameter list (including those passed in registers, for fastcall).
For example, a parent class, A, can have two subclasses B and C. Both B and C's parent class is A, but B and C are two separate subclasses. Hybrid inheritance Hybrid inheritance is when a mix of two or more of the above types of inheritance occurs. An example of this is when a class A has a subclass B which has two subclasses, C and D.
The C++ examples in this section demonstrate the principle of using composition and interfaces to achieve code reuse and polymorphism. Due to the C++ language not having a dedicated keyword to declare interfaces, the following C++ example uses inheritance from a pure abstract base class.
A class in C++ is a user-defined type or data structure declared with any of the keywords class, struct or union (the first two are collectively referred to as non-union classes) that has data and functions (also called member variables and member functions) as its members whose access is governed by the three access specifiers private, protected or public.
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code: