Search results
Results From The WOW.Com Content Network
The cochlear nerve (also auditory nerve or acoustic nerve) is one of two parts of the vestibulocochlear nerve, a cranial nerve present in amniotes, the other part being the vestibular nerve. The cochlear nerve carries auditory sensory information from the cochlea of the inner ear directly to the brain. The other portion of the vestibulocochlear ...
Neurons whose cell bodies lie in the spiral ganglion are strung along the bony core of the cochlea, and send fibers into the central nervous system (CNS). These bipolar neurons are the first neurons in the auditory system to fire an action potential, and supply all of the brain's auditory input.
The release of neurotransmitter at a ribbon synapse, in turn, generates an action potential in the connected auditory-nerve fiber. [7] Hyperpolarization of the hair cell, which occurs when potassium leaves the cell, is also important, as it stops the influx of calcium and therefore stops the fusion of vesicles at the ribbon synapses.
The olivocochlear system is a component of the auditory system involved with the descending control of the cochlea.Its nerve fibres, the olivocochlear bundle (OCB), form part of the vestibulocochlear nerve (VIIIth cranial nerve, also known as the auditory-vestibular nerve), and project from the superior olivary complex in the brainstem to the cochlea.
The bushy cells have specialized electrical properties that allow them to transmit timing information from the auditory nerve to more central areas of the auditory system. Because bushy cells receive input from multiple auditory nerve fibers that are tuned to similar frequencies, bushy cells can improve the precision of the timing information ...
The hair cells are the primary auditory receptor cells and they are also known as auditory sensory cells, acoustic hair cells, auditory cells or cells of Corti. The organ of Corti is lined with a single row of inner hair cells and three rows of outer hair cells. The hair cells have a hair bundle at the apical surface of the cell.
There are far fewer inner hair cells in the cochlea than afferent nerve fibers – many auditory nerve fibers innervate each hair cell. The neural dendrites belong to neurons of the auditory nerve, which in turn joins the vestibular nerve to form the vestibulocochlear nerve, or cranial nerve number VIII. [29]
K v 1.1 and K v 1.2 are located in the transition zone between the axon and the terminal, while K v 1.3 K v 7.5 are located in the calyx. [15] There is a calcium activated potassium channel expressed in the calyx, however this type of channel does not contribute to neurotransmitter release.