Search results
Results From The WOW.Com Content Network
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
Those who wish to adopt the textbooks are required to send a request to NCERT, upon which soft copies of the books are received. The material is press-ready and may be printed by paying a 5% royalty, and by acknowledging NCERT. [11] The textbooks are in color-print and are among the least expensive books in Indian book stores. [11]
This category represents all rational numbers, that is, those real numbers which can be represented in the form: ...where and are integers and is not equal to zero. All integers are rational, including zero.
Any rational number, expressed as the quotient of an integer a and a (non-zero) natural number b, satisfies the above definition, because x = a / b is the root of a non-zero polynomial, namely bx − a. [1] Quadratic irrational numbers, irrational solutions of a quadratic polynomial ax 2 + bx + c with integer coefficients a, b, and c ...
The modern study of number theory in its abstract form is largely attributed to Pierre de Fermat and Leonhard Euler. The field came to full fruition with the contributions of Adrien-Marie Legendre and Carl Friedrich Gauss. [17] Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics.
It is the ring of integers in the number field () of Gaussian rationals, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers, [] is a Euclidean domain. The ring of integers of an algebraic number field is the unique maximal order in the field. It is always a Dedekind domain. [4]
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .