When.com Web Search

  1. Ad

    related to: volume rectangular formula examples problems in real life

Search results

  1. Results From The WOW.Com Content Network
  2. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    For example, it is possible to pack 147 rectangles of size (137,95) in a rectangle of size (1600,1230). Packing different rectangles in a rectangle : The problem of packing multiple rectangles of varying widths and heights in an enclosing rectangle of minimum area (but with no boundaries on the enclosing rectangle's width or height) has an ...

  3. Rectangle packing - Wikipedia

    en.wikipedia.org/wiki/Rectangle_packing

    Maximum disjoint set (or Maximum independent set) is a problem in which both the sizes and the locations of the input rectangles are fixed, and the goal is to select a largest sum of non-overlapping rectangles. In contrast, in rectangle packing (as in real-life packing problems) the sizes of the rectangles are given, but their locations are ...

  4. Paper bag problem - Wikipedia

    en.wikipedia.org/wiki/Paper_bag_problem

    A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.

  5. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    The formula for the volume of a pyramidal square frustum was introduced by the ancient Egyptian mathematics in what is called the Moscow Mathematical Papyrus, written in the 13th dynasty (c. 1850 BC): = (+ +), where a and b are the base and top side lengths, and h is the height.

  6. Volume - Wikipedia

    en.wikipedia.org/wiki/Volume

    Some SI units of volume to scale and approximate corresponding mass of water. To ease calculations, a unit of volume is equal to the volume occupied by a unit cube (with a side length of one). Because the volume occupies three dimensions, if the metre (m) is chosen as a unit of length, the corresponding unit of volume is the cubic metre (m 3).

  7. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus

  8. Square–cube law - Wikipedia

    en.wikipedia.org/wiki/Square–cube_law

    Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the square–cube law.

  9. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    If we allow the intervals between interpolation points to vary, we find another group of quadrature formulas, such as the Gaussian quadrature formulas. A Gaussian quadrature rule is typically more accurate than a Newton–Cotes rule that uses the same number of function evaluations, if the integrand is smooth (i.e., if it is sufficiently ...