When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cubic graph - Wikipedia

    en.wikipedia.org/wiki/Cubic_graph

    According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.

  3. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...

  4. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The discriminant Δ of the cubic is the square of = () (), where a is the leading coefficient of the cubic, and r 1, r 2 and r 3 are the three roots of the cubic. As Δ {\displaystyle {\sqrt {\Delta }}} changes of sign if two roots are exchanged, Δ {\displaystyle {\sqrt {\Delta }}} is fixed by the Galois group only if the Galois group is A 3 .

  5. Table of simple cubic graphs - Wikipedia

    en.wikipedia.org/wiki/Table_of_simple_cubic_graphs

    Roughly speaking, each vertex represents a 3-jm symbol, the graph is converted to a digraph by assigning signs to the angular momentum quantum numbers j, the vertices are labelled with a handedness representing the order of the three j (of the three edges) in the 3-jm symbol, and the graph represents a sum over the product of all these numbers ...

  6. Regular graph - Wikipedia

    en.wikipedia.org/wiki/Regular_graph

    Regular graphs of degree at most 2 are easy to classify: a 0-regular graph consists of disconnected vertices, a 1-regular graph consists of disconnected edges, and a 2-regular graph consists of a disjoint union of cycles and infinite chains. A 3-regular graph is known as a cubic graph.

  7. Möbius ladder - Wikipedia

    en.wikipedia.org/wiki/Möbius_ladder

    In graph theory, the Möbius ladder M n, for even numbers n, is formed from an n-cycle by adding edges (called "rungs") connecting opposite pairs of vertices in the cycle. It is a cubic, circulant graph, so-named because (with the exception of M 6 (the utility graph K 3,3), M n has exactly n/2 four-cycles [1] which link together by their shared edges to form a topological Möbius strip.

  8. Hamiltonian decomposition - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_decomposition

    The line graphs of cubic graphs are 4-regular and have a Hamiltonian decomposition if and only if the underlying cubic graph has a Hamiltonian cycle. [ 12 ] [ 13 ] As a consequence, Hamiltonian decomposition remains NP-complete for classes of graphs that include line graphs of hard instances of the Hamiltonian cycle problem .

  9. Cubic plane curve - Wikipedia

    en.wikipedia.org/wiki/Cubic_plane_curve

    In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation ⁠ F ( x , y , z ) = 0 {\displaystyle F(x,y,z)=0} ⁠ applied to homogeneous coordinates ⁠ ( x : y : z ) {\displaystyle (x:y:z)} ⁠ for the projective plane ; or the inhomogeneous version for the affine space determined by setting z = 1 in such an ...