When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...

  3. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.

  4. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    A tree of primitive Pythagorean triples is a mathematical tree in which each node represents a primitive Pythagorean triple and each primitive Pythagorean triple is represented by exactly one node. In two of these trees, Berggren's tree and Price's tree, the root of the tree is the triple (3,4,5), and each node has exactly three children ...

  5. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).

  6. Plimpton 322 - Wikipedia

    en.wikipedia.org/wiki/Plimpton_322

    This table lists two of the three numbers in what are now called Pythagorean triples, i.e., integers a, b, and c satisfying a 2 + b 2 = c 2. From a modern perspective, a method for constructing such triples is a significant early achievement, known long before the Greek and Indian mathematicians discovered solutions to this problem. There has ...

  7. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Examples include (3, 4, 5) and (5, 12, 13). There are infinitely many such triples, [19] and methods for generating such triples have been studied in many cultures, beginning with the Babylonians [20] and later ancient Greek, Chinese, and Indian mathematicians. [1] Mathematically, the definition of a Pythagorean triple is a set of three ...

  8. Integer triangle - Wikipedia

    en.wikipedia.org/wiki/Integer_triangle

    A Pythagorean triangle is right-angled and Heronian. Its three integer sides are known as a Pythagorean triple or Pythagorean triplet or Pythagorean triad. [9] All Pythagorean triples (,,) with hypotenuse which are primitive (the sides having no common factor) can be generated by

  9. Pythagoreanism - Wikipedia

    en.wikipedia.org/wiki/Pythagoreanism

    The Plimpton 322 tablet records Pythagorean triples from Babylonian times. [2] Animation demonstrating the simplest Pythagorean triple, 3 2 + 4 2 = 5 2. Bust of Pythagoras, Musei Capitolini, Rome. Pythagoras was already well known in ancient times for his supposed mathematical achievement of the Pythagorean theorem. [3]