Search results
Results From The WOW.Com Content Network
A generalization of the concept of Pythagorean triples is the search for triples of positive integers a, b, and c, such that a n + b n = c n, for some n strictly greater than 2. Pierre de Fermat in 1637 claimed that no such triple exists, a claim that came to be known as Fermat's Last Theorem because it took longer than any other conjecture by ...
A Pythagorean triple can be generated using any two positive integers by the following procedures using generalized Fibonacci sequences. For initial positive integers h n and h n +1 , if h n + h n +1 = h n +2 and h n +1 + h n +2 = h n +3 , then
A Pythagorean triple is a set of three positive integers a, b, and c having the property that they can be respectively the two legs and the hypotenuse of a right triangle, thus satisfying the equation + =; the triple is said to be primitive if and only if the greatest common divisor of a, b, and c is one.
A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).
A Pythagorean triangle is right-angled and Heronian. Its three integer sides are known as a Pythagorean triple or Pythagorean triplet or Pythagorean triad. [9] All Pythagorean triples (,,) with hypotenuse which are primitive (the sides having no common factor) can be generated by
The problem asks if it is possible to color each of the positive integers either red or blue, so that no Pythagorean triple of integers a, b, c, satisfying + = are all the same color. For example, in the Pythagorean triple 3, 4, and 5 ( 3 2 + 4 2 = 5 2 {\displaystyle 3^{2}+4^{2}=5^{2}} ), if 3 and 4 are colored red, then 5 must be colored blue.
This table lists two of the three numbers in what are now called Pythagorean triples, i.e., integers a, b, and c satisfying a 2 + b 2 = c 2. From a modern perspective, a method for constructing such triples is a significant early achievement, known long before the Greek and Indian mathematicians discovered solutions to this problem. There has ...
Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive.