Search results
Results From The WOW.Com Content Network
Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.
Dispersion of waves on water was studied by Pierre-Simon Laplace in 1776. [ 7 ] The universality of the Kramers–Kronig relations (1926–27) became apparent with subsequent papers on the dispersion relation's connection to causality in the scattering theory of all types of waves and particles.
Forward scattering is the deflection of waves by small angles so that they continue to move in close to the same direction as before the scattering. It can occur with all types of waves, for instance light , ultraviolet radiation, X-rays as well as matter waves such as electrons , neutrons and even water waves .
In deep water, there are no three-wave interactions between surface gravity waves; the shape of the dispersion relation prohibits this. There is, however, a four-wave interaction; it describes the experimentally-observed interaction of obliquely moving waves very well (i.e. with no free parameters or adjustments). [6]
Shallow-water equations can be used to model Rossby and Kelvin waves in the atmosphere, rivers, lakes and oceans as well as gravity waves in a smaller domain (e.g. surface waves in a bath). In order for shallow-water equations to be valid, the wavelength of the phenomenon they are supposed to model has to be much larger than the depth of the ...
The main difference between the effects of single and multiple scattering is that single scattering can usually be treated as a random phenomenon, whereas multiple scattering, somewhat counterintuitively, can be modeled as a more deterministic process because the combined results of a large number of scattering events tend to average out.
For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation. More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel, and the average Eulerian flow velocity of the fluid at a fixed
After the wave breaks, it becomes a wave of translation and erosion of the ocean bottom intensifies. Cnoidal waves are exact periodic solutions to the Korteweg–de Vries equation in shallow water, that is, when the wavelength of the wave is much greater than the depth of the water.