When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Charles's law - Wikipedia

    en.wikipedia.org/wiki/Charles's_law

    where V 100 is the volume occupied by a given sample of gas at 100 °C; V 0 is the volume occupied by the same sample of gas at 0 °C; and k is a constant which is the same for all gases at constant pressure. This equation does not contain the temperature and so is not what became known as Charles's Law.

  3. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:

  4. Grüneisen parameter - Wikipedia

    en.wikipedia.org/wiki/Grüneisen_parameter

    Some formulations for the Grüneisen parameter include: = = = = = (⁡ ⁡) where V is volume, and are the principal (i.e. per-mass) heat capacities at constant pressure and volume, E is energy, S is entropy, α is the volume thermal expansion coefficient, and are the adiabatic and isothermal bulk moduli, is the speed of sound in the medium ...

  5. Mie–Grüneisen equation of state - Wikipedia

    en.wikipedia.org/wiki/Mie–Grüneisen_equation...

    A temperature-corrected version that is used in computational mechanics has the form [6] [7]: 61 = [] +;:= where is the bulk speed of sound, is the initial density, is the current density, is Grüneisen's gamma at the reference state, = / is a linear Hugoniot slope coefficient, is the shock wave velocity, is the particle velocity, and is the internal energy per unit reference volume.

  6. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    (Note - the relation between pressure, volume, temperature, and particle number which is commonly called "the equation of state" is just one of many possible equations of state.) If we know all k+2 of the above equations of state, we may reconstitute the fundamental equation and recover all thermodynamic properties of the system.

  7. Joule expansion - Wikipedia

    en.wikipedia.org/wiki/Joule_expansion

    The Joule expansion (a subset of free expansion) is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated. The partition between the two parts of the container is then opened, and the gas fills the ...

  8. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G (Gibbs free energy) or H . [1] The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy , and volume for a closed system in ...

  9. Murnaghan equation of state - Wikipedia

    en.wikipedia.org/wiki/Murnaghan_equation_of_state

    In practice, the Murnaghan equation is used to perform a regression on a data set, where one gets the values of the coefficients K 0 and K ' 0. These coefficients obtained, and knowing the value of the volume to ambient conditions, then we are in principle able to calculate the volume, density and bulk modulus for any pressure.