When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.

  3. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    Kurtosis calculator; Free Online Software (Calculator) computes various types of skewness and kurtosis statistics for any dataset (includes small and large sample tests).. Kurtosis on the Earliest known uses of some of the words of mathematics; Celebrating 100 years of Kurtosis a history of the topic, with different measures of kurtosis.

  4. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.

  5. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  6. Skewed generalized t distribution - Wikipedia

    en.wikipedia.org/wiki/Skewed_generalized_t...

    where is the beta function, is the location parameter, > is the scale parameter, < < is the skewness parameter, and > and > are the parameters that control the kurtosis. and are not parameters, but functions of the other parameters that are used here to scale or shift the distribution appropriately to match the various parameterizations of this distribution.

  7. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    The most useful of these are , called the L-skewness, and , the L-kurtosis. L-moment ratios lie within the interval ( −1, 1 ) . Tighter bounds can be found for some specific L-moment ratios; in particular, the L-kurtosis τ 4 {\displaystyle \ \tau _{4}\ } lies in [ ⁠− + 1 / 4 ⁠ , 1 ) , and

  8. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    The sample skewness g 1 and kurtosis g 2 are both asymptotically normal. However, the rate of their convergence to the distribution limit is frustratingly slow, especially for g 2 . For example even with n = 5000 observations the sample kurtosis g 2 has both the skewness and the kurtosis of approximately 0.3, which is not negligible.

  9. Skew normal distribution - Wikipedia

    en.wikipedia.org/wiki/Skew_normal_distribution

    The exponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional to for some positive .