Search results
Results From The WOW.Com Content Network
The current theoretical model of the atom involves a dense nucleus surrounded by a probabilistic "cloud" of electrons. Atomic theory is the scientific theory that matter is composed of particles called atoms. The definition of the word "atom" has changed over the years in response to scientific discoveries.
If an atom has more electrons than protons, then it has an overall negative charge, and is called a negative ion (or anion). Conversely, if it has more protons than electrons, it has a positive charge, and is called a positive ion (or cation). The electrons of an atom are attracted to the protons in an atomic nucleus by the electromagnetic force.
When there is an excess of electrons, the object is said to be negatively charged. When there are fewer electrons than the number of protons in nuclei, the object is said to be positively charged. When the number of electrons and the number of protons are equal, their charges cancel each other and the object is said to be electrically neutral.
Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; [24] [25] this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark. 1974
1936 Eugene Wigner develops the theory of neutron absorption by atomic nuclei; 1936 Hermann Arthur Jahn and Edward Teller present their systematic study of the symmetry types for which the Jahn–Teller effect is expected [8] 1937 Carl Anderson proves experimentally the existence of the pion predicted by Yukawa's theory.
Fermions are particles "like electrons and nucleons" and generally comprise the matter. Note that any subatomic or atomic particle composed of even total number of fermions (such as protons, neutrons, and electrons) is a boson, so a boson is not necessarily a force transmitter and perfectly can be an ordinary material particle.
Although protons have affinity for oppositely charged electrons, this is a relatively low-energy interaction and so free protons must lose sufficient velocity (and kinetic energy) in order to become closely associated and bound to electrons. High energy protons, in traversing ordinary matter, lose energy by collisions with atomic nuclei, and by ...
In the late 19th century with the discovery of the electron, and in the early 20th century, with the Geiger–Marsden experiment discovery of the atomic nucleus, and the birth of particle physics, matter was seen as made up of electrons, protons and neutrons interacting to form atoms.