When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kahan summation algorithm - Wikipedia

    en.wikipedia.org/wiki/Kahan_summation_algorithm

    For example, if the summands are uncorrelated random numbers with zero mean, the sum is a random walk, and the condition number will grow proportional to . On the other hand, for random inputs with nonzero mean the condition number asymptotes to a finite constant as n → ∞ {\displaystyle n\to \infty } .

  3. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .

  4. Pairwise summation - Wikipedia

    en.wikipedia.org/wiki/Pairwise_summation

    Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).

  5. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.

  6. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...

  7. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.

  8. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics.It states that every even natural number greater than 2 is the sum of two prime numbers.

  9. Sum and Product Puzzle - Wikipedia

    en.wikipedia.org/wiki/Sum_and_Product_Puzzle

    For example, 11 can be 2-split into 2+9, 3+8, 4+7, and 5+6. The respective products are 18, 24, 28, and 30 and the players put a tick mark beside each of these products in their tables (Table 1). When they are done, some numbers have no tick marks, some have one, and some have more than one.