When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.

  3. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  4. Pole and polar - Wikipedia

    en.wikipedia.org/wiki/Pole_and_polar

    The pole of a line L in a circle C is a point Q that is the inversion in C of the point P on L that is closest to the center of the circle. Conversely, the polar line (or polar) of a point Q in a circle C is the line L such that its closest point P to the center of the circle is the inversion of Q in C.

  5. Conic constant - Wikipedia

    en.wikipedia.org/wiki/Conic_constant

    The constant is given by =, where e is the eccentricity of the conic section. The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0.

  6. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    The center of a conic, if it exists, is a point that bisects all the chords of the conic that pass through it. This property can be used to calculate the coordinates of the center, which can be shown to be the point where the gradient of the quadratic function Q vanishes—that is, [8] = [,] = [,].

  7. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The sagitta (also known as the versine) is a line segment drawn perpendicular to a chord, between the midpoint of that chord and the arc of the circle. Given the length y of a chord and the length x of the sagitta, the Pythagorean theorem can be used to calculate the radius of the unique circle that will fit around the two lines: = +.

  8. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  9. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    The circle with center and radius () intersects circle orthogonal. Angle between two circles If the radius ρ {\displaystyle \rho } of the circle centered at P {\displaystyle P} is different from Π ( P ) {\displaystyle {\sqrt {\Pi (P)}}} one gets the angle of intersection φ {\displaystyle \varphi } between the two circles applying the Law of ...