Ad
related to: swell vs wave difference
Search results
Results From The WOW.Com Content Network
Breaking swell waves at Hermosa Beach, California. A swell, also sometimes referred to as ground swell, in the context of an ocean, sea or lake, is a series of mechanical waves that propagate along the interface between water and air under the predominating influence of gravity, and thus are often referred to as surface gravity waves.
Significant wave height H m0, defined in the frequency domain, is used both for measured and forecasted wave variance spectra.Most easily, it is defined in terms of the variance m 0 or standard deviation σ η of the surface elevation: [6] = =, where m 0, the zeroth-moment of the variance spectrum, is obtained by integration of the variance spectrum.
The Douglas sea scale is a scale which measures the height of the waves and also measures the swell of the sea. The scale is very simple to follow and is expressed in one of 10 degrees. The scale is very simple to follow and is expressed in one of 10 degrees.
In oceanography, sea state is the general condition of the free surface on a large body of water—with respect to wind waves and swell—at a certain location and moment. A sea state is characterized by statistics, including the wave height, period, and spectrum. The sea state varies with time, as the wind and swell conditions change.
Depending on context, wave height may be defined in different ways: For a sine wave, the wave height H is twice the amplitude (i.e., the peak-to-peak amplitude): [1] =.; For a periodic wave, it is simply the difference between the maximum and minimum of the surface elevation z = η(x – c p t): [1] = {()} {()}, with c p the phase speed (or propagation speed) of the wave.
The term 'heat dome' has gained prominence recently as climate change, El Niño and other variables have warmed global temperatures and shifted weather patterns.
After the wave breaks, it becomes a wave of translation and erosion of the ocean bottom intensifies. Cnoidal waves are exact periodic solutions to the Korteweg–de Vries equation in shallow water, that is, when the wavelength of the wave is much greater than the depth of the water.
An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. [1] Depth contours, shoreline configurations, and interactions with other currents influence a current's direction and ...