Search results
Results From The WOW.Com Content Network
On the other hand, a randomly sampled complex tensor of the same size will be a rank-1 tensor with probability zero, a rank-2 tensor with probability one, and a rank-3 tensor with probability zero. It is even known that the generic rank-3 real tensor in R 2 ⊗ R 2 ⊗ R 2 {\displaystyle \mathbb {R} ^{2}\otimes \mathbb {R} ^{2}\otimes \mathbb ...
In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition.It may be regarded as one type of generalization of the matrix singular value decomposition.
A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...
Matrix rank should not be confused with tensor order, which is called tensor rank. Tensor order is the number of indices required to write a tensor , and thus matrices all have tensor order 2. More precisely, matrices are tensors of type (1,1), having one row index and one column index, also called covariant order 1 and contravariant order 1 ...
For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner products. In the (0, M ) -entry of the table, M denotes the dimensionality of the underlying vector space or manifold because for each dimension of the space, a separate index is needed to ...
For a 3rd-order tensor , where is either or , Tucker Decomposition can be denoted as follows, = () where is the core tensor, a 3rd-order tensor that contains the 1-mode, 2-mode and 3-mode singular values of , which are defined as the Frobenius norm of the 1-mode, 2-mode and 3-mode slices of tensor respectively.
A (0,0) tensor is a number in the field . A (1,0) tensor is a vector. A (0,1) tensor is a covector. A (0,2) tensor is a bilinear form. An example is the metric tensor . A (1,1) tensor is a linear map.
For example, the Ricci tensor is a non-metric contraction of the Riemann curvature tensor, and the scalar curvature is the unique metric contraction of the Ricci tensor. One can also view contraction of a tensor field in the context of modules over an appropriate ring of functions on the manifold [ 5 ] or the context of sheaves of modules over ...