Search results
Results From The WOW.Com Content Network
The uniformization theorem for surfaces states that the upper half-plane is the universal covering space of surfaces with constant negative Gaussian curvature. The closed upper half-plane is the union of the upper half-plane and the real axis. It is the closure of the upper half-plane.
Two points in the upper half-plane give isomorphic elliptic curves if and only if they are related by a transformation in the modular group. Thus, the quotient of the upper half-plane by the action of the modular group is the so-called moduli space of elliptic curves: a space whose points describe isomorphism classes of elliptic curves. This is ...
A half-space can be either open or closed. An open half-space is either of the two open sets produced by the subtraction of a hyperplane from the affine space. A closed half-space is the union of an open half-space and the hyperplane that defines it. The open (closed) upper half-space is the half-space of all (x 1, x 2, ..., x n) such that x n > 0
Farhang-e-Asifiya (Urdu: فرہنگ آصفیہ, lit. 'The Dictionary of Asif') is an Urdu-to-Urdu dictionary compiled by Syed Ahmad Dehlvi. [1] It has more than 60,000 entries in four volumes. [2] It was first published in January 1901 by Rifah-e-Aam Press in Lahore, present-day Pakistan. [3] [4]
Linear fractional transformations leave cross ratio invariant, so any linear fractional transformation that leaves the unit disk or upper half-planes stable is an isometry of the hyperbolic plane metric space. Since Henri Poincaré explicated these models they have been named after him: the Poincaré disk model and the Poincaré half-plane model.
One is the Poincaré half-plane model, defining a model of hyperbolic space on the upper half-plane. The Poincaré disk model defines a model for hyperbolic space on the unit disk. The disk and the upper half plane are related by a conformal map, and isometries are given by Möbius transformations.
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R).The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces.
In mathematics, in the field of complex analysis, a Nevanlinna function is a complex function which is an analytic function on the open upper half-plane and has a non-negative imaginary part. A Nevanlinna function maps the upper half-plane to itself or a real constant, [1] but is not necessarily injective or surjective.