Ads
related to: vorticity equation meteorology notes answer page book
Search results
Results From The WOW.Com Content Network
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:
In the context of meteorology, a solenoid is a tube-shaped region in the atmosphere where isobaric (constant pressure) and isopycnal (constant density) surfaces intersect, causing vertical circulation. [1] [2] They are so-named because they are driven by the solenoid term of the vorticity equation. [3]
Vorticity is useful for understanding how ideal potential flow solutions can be perturbed to model real flows. In general, the presence of viscosity causes a diffusion of vorticity away from the vortex cores into the general flow field; this flow is accounted for by a diffusion term in the vorticity transport equation. [9]
Carl Rossby proposed in 1939 [4] that, instead of the full three-dimensional vorticity vector, the local vertical component of the absolute vorticity is the most important component for large-scale atmospheric flow, and that the large-scale structure of a two-dimensional non-divergent barotropic flow can be modeled by assuming that is conserved.
The Sverdrup relation can be derived from the linearized barotropic vorticity equation for steady motion: = / . Here is the geostrophic interior y-component (northward) and is the z-component (upward) of the water velocity. In words, this equation says that as a vertical column of water is squashed, it moves toward the Equator; as it is ...
In meteorology, [2] helicity corresponds to the transfer of vorticity from the environment to an air parcel in convective motion. Here the definition of helicity is simplified to only use the horizontal component of wind and vorticity, and to only integrate in the vertical direction, replacing the volume integral with a one-dimensional definite integral or line integral:
The barotropic vorticity equation assumes the atmosphere is nearly barotropic, which means that the direction and speed of the geostrophic wind are independent of height. In other words, there is no vertical wind shear of the geostrophic wind. It also implies that thickness contours (a proxy for temperature) are parallel to upper level height ...
In general, the evolution of vorticity can be broken into contributions from advection (as vortex tubes move with the flow), stretching and twisting (as vortex tubes are pulled or twisted by the flow) and baroclinic vorticity generation, which occurs whenever there is a density gradient along surfaces of constant pressure.