Search results
Results From The WOW.Com Content Network
The variable y is directly proportional to the variable x with proportionality constant ~0.6. The variable y is inversely proportional to the variable x with proportionality constant 1. In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio.
If x kilograms of salami and y kilograms of sausage costs a total of €12 then, €6×x + €3×y = €12. Solving for y gives the point-slope form = +, as above. That is, if we first choose the amount of salami x, the amount of sausage can be computed as a function = = +.
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
In mathematics, the term linear is used in two distinct senses for two different properties: . linearity of a function (or mapping);; linearity of a polynomial.; An example of a linear function is the function defined by () = (,) that maps the real line to a line in the Euclidean plane R 2 that passes through the origin.
A constant function is also considered linear in this context, as it is a polynomial of degree zero or is the zero polynomial. Its graph, when there is only one variable, is a horizontal line. In this context, a function that is also a linear map (the other meaning) may be referred to as a homogeneous linear function or a linear form.
To test whether the third equation is linearly dependent on the first two, postulate two parameters a and b such that a times the first equation plus b times the second equation equals the third equation. Since this always holds for the right sides, all of which are 0, we merely need to require it to hold for the left sides as well:
When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set. For linear equations, logical independence is the same as linear independence. The equations x − 2y = −1, 3x + 5y = 8, and 4x + 3y = 7 are linearly dependent. For example ...