Search results
Results From The WOW.Com Content Network
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and therefore follows any changes in the magnitude of the current.
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). [1] If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self-inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same ...
Electromagnetic induction has found many applications, including electrical components such as inductors and transformers, and devices such as electric motors and generators. History Faraday's experiment showing induction between coils of wire: The liquid battery (right) provides a current that flows through the small coil (A) , creating a ...
An inductor is characterized by its inductance, which is the ratio of the voltage to the rate of change of current. In the International System of Units (SI), the unit of inductance is the henry (H) named for 19th century American scientist Joseph Henry. In the measurement of magnetic circuits, it is equivalent to weber / ampere .
For example, he saw transient currents when he quickly slid a bar magnet in and out of a coil of wires, and he generated a steady current by rotating a copper disk near the bar magnet with a sliding electrical lead ("Faraday's disk"). [10]: 191–195 Faraday's disk, the first electric generator, a type of homopolar generator
k is the coupling coefficient, Le1 and Le2 is the leakage inductance, M1 (M2) is the mutual inductance. An inductively coupled transponder consists of a solid state transceiver chip connected to a large coil that functions as an antenna. When brought within the oscillating magnetic field of a reader unit, the transceiver is powered up by energy ...
To model the nonideal behavior of a real circuit component may require a combination of multiple ideal electrical elements to approximate its function. For example, an inductor circuit element is assumed to have inductance but no resistance or capacitance, while a real inductor, a coil of wire, has some resistance in addition to its inductance ...
Another example of the use of distributed elements is in the modelling of the base region of a bipolar junction transistor at high frequencies. The analysis of charge carriers crossing the base region is inaccurate when the base region is simply treated as a lumped element. A more successful model is a simplified transmission line model, which ...