Search results
Results From The WOW.Com Content Network
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n, then so is −m. The tables below only ...
The next number not yet crossed out in the list after 5 is 7; the next step would be to cross out every 7th number in the list after 7, but they are all already crossed out at this point, as these numbers (14, 21, 28) are also multiples of smaller primes because 7 × 7 is greater than 30.
[14] [8]: 23–25 Exactly one of a, b is divisible by 4, [8] but never c (because c is never even). Exactly one of a, b, c is divisible by 5. [8] The largest number that always divides abc is 60. [15] Any odd number of the form 2m+1, where m is an integer and m>1, can be the odd leg of a primitive
As in the case where b=1, numbers of this form will always be divisible by 2 if a+b is even, but it is still possible to define generalized half-Fermat primes of this type. For the smallest prime of the form F n ( a , b ) {\displaystyle F_{n}(a,b)} (for odd a + b {\displaystyle a+b} ), see also OEIS : A111635 .
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9, and 18 is divisible by 9. The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91).